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The boundary layer that forms on the walls of a shock tube, after the diaphragm 
which initially separates two gases at  different pressures is burst, is investigated. 
Both the driver and driven gases are assumed to have the same thermal properties 
and the shock tube wall is maintained at  constant temperature. Crocco variables 
are used and a method is presented for solving the compressible boundary-layer 
equations within the tube in similarity variables. Three cases, corresponding to 
different initial pressure ratios of the driver and driven gases, are calculated which 
are representative of weak and medium-strength shock and expansion waves. 

1. Introduction 
1.1. General description 

Consider a thin diaphragm at x = 0 in an infinitely long cylindrical shock tube, 
separating two gases at  different pressures. Suppose that the gas to the left 
of the diaphragm has a higher pressure pl than that to the right (p?) ,  so that the 
pressure ratio PR = pl/pr > 1. At t = 0 the diaphragm is suddenly burst. Ideally 
this causes a shock wave to advance into the undisturbed fluid to the right at 
constant speed U,, which is subsequently followed by a contact surface moving 
with constant speed U,. The fluid between the contact surface and the shock 
was originally in x > 0 and has acquired a velocity U, abruptly, upon passing 
through the shock. Across the contact surface the fluid temperature and density 
are discontinuous while the pressure and velocity must be continuous. The un- 
disturbed fluid to the left of the diaphragm is sucked through an expansion wave 
advancing to the left, and achieves a speed U, at the end of the wave. 

The inviscid unsteady flow that develops in the shock tube after the diaphragm 
is burst was given by Riemann in 1860 and has been described by Shapiro 
(1960, p. 1418). The objective of the present paper is to study the laminar 
boundary layer that forms on the walls of the shock tube and extends from the 
leading edge of the expansion wave to the foot of the shock. The flow may be 
divided into four distinct regions (shown in figure I ,  at time t ) :  (i) that in the 
expansion fan, E ;  (ii) that between the end of the fan and the burst diaphragm, L; 
(iii) the interaction region between the diaphragm and the contact surface, I ;  
(iv) that between the contact surface and the shock, M .  

It should be noted that, if the initial pressure difference Pn is large enough, the 
2-2 
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fan will extend into the I region and there will be no L region. In  the present 
paper, this case will not be considered and only cases of medium-strength waves, 
where the region L is of non-zero thickness will be treated. 

Various authors have considered this problem. Mirels (1955) obtained a solu- 
tion for the boundary layer behind a shock wave advancing over an infinite 
flat plate. This solution is a valid one for the present problem in the 2cf region. 
Subsequently, Mirels (i956) extended his previous work to the case of an in- 
finitely thin expansion wave advancing along an infinite flat plate. If the E 
region is very thin (weak waves), this solution will approximate the flow in the 
L region. Cohen (1957) obtained a solution in the fan, by expanding the flow 
variables in a power series in a variable which measured distance from the 
front of the fan. His solution is valid in the E region downstream of the leading 
edge of the fan to approximately x z -0*7c,t, where c1 is the sound speed of 
the undisturbed gas. In theory, Cohen's solution could be extended to x = 0 
by taking more terms in the series and an attempt was made by Becker (1962) 
to extend the solution to x = 0 by a continuation procedure. 

Thus the solution in the M region is well known while the solution in the E 
and L regions have been given approximate treatment. The solution in the 
I region is a mathematically more difficult problem and a recent paper by 
Ban & Kuerti (1969), who treated the case of weak waves approximately, is the 
only solution available in this region. 

This problem is intimately connected with two other problems. Stewartson 
(1951) considered the problem of a semi-infinite flat plate impulsively started 
from rest a t  t = 0, to achieve a velocity U,. Let x measure the distance from the 
leading edge of the plate and r = Uot/x. For small r, the solution is that given 
by Rayleigh (191 1) since for any x the boundary layer is not aware of the presence 
of the leading edge. At T = 1, Stewartson (1951) found an essential singularity 
such that the solution for 7 < 1 was not an analytic continuation of the solution 
for r > 1, although all derivatives with respect to T are continuous there. 
Physically, for any x, r = 1 corresponds to the first time the flow is aware of the 
leading edge. Finally as r - f m ,  the solution must approach that given by 
Blasius (1908). The problem of how to describe the transient motion between the 
Rayleigh and Blasius solution was eventually solved numerically by Hall (1969) 
and later by Dennis (1972). The major difficulty with solving this problem is 
that if the equations of motion are written in similarity variables 7 = y (Uo/vx)3, 
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7 = Uot/x ( y  measuring normal distance from the plate), thus reducing the number 
of independent variables from three to two, the equations are singular-parabolic 
in the region 7 > I. The equations are of first order in 7 and second order in 7; 
the coefficient of the 7 derivative is 1 - UT/U, and for 7 > 1, it will vanish and 
change sign somewhere in the boundary layer. Effectively this means that 
standard numerical marching techniques in this region will fail. Hall (1969) 
overcame the problem by solving the equations in the x, y ,  t space between the 
planes x = 1 and x = 2; Dennis (1972)) by using the Rayleigh (1911) solution as 
a boundary condition at  7 = 1 and the Blasius (1908) solution for a large value 
of r ,  used a special numerical procedure to solve the problem in similarity 
variables as a boundary-value problem. The question of how the variable x 
enters the solution at 7 = 1 + has only recently been clarified by Stewartson 
(1972). 

Lam & Crocco (1958) considered the problem of a shock advancing over a semi- 
infinite flat plate (which is identical with Stewartson’s for very weak shocks) 
and found that two boundary conditions must be enforced at  x = 0 and x = Uot, 
where x measures distance from the leading edge and Uo is the speed of the fluid 
in the free stream following the shock. Using the boundary-layer equations 
written in Crocco variables, they found that the similarity equations are singular- 
parabolic between x = 0 and a Stewartson singularity at x = Uot. Physically, 
this is the region where there is an interaction with the boundary layer created 
by the passage of the shock and the downstream influence of the leading edge. 

Ban & Kuerti (1969) first considered the flow in the interaction region of 
a shock tube but considered only the case of weak shock and expansion waves. 
Using a linearization scheme, they produced a solution for an initial pressure 
difference of PR = 1.35. In the shock tube problem there is a Stewartson 
singularity at  the contact surface x = Uot and the equations are singular- 
parabolic between the diaphragm (x = 0) and x = Uot. In  the present paper the 
work of Ban & Kuerti (1969) is extended to consider (a )  the case of medium- 
strength shock and expansion waves, where medium implies that the expansion 
wave does not extend into the interaction region, (b)  the effect of finite thickness 
expansion waves and (c) the full nonlinear equations. Three cases corresponding 
to three different initial pressure ratios Pn = 2, 6 and 10 for an air-air shock 
tube with Prandtl number c = 0.73 were considered. The problem is formulated 
in Crocco variables and then in similarity variables, thus reducing the number 
of independent variables from three to two. The solutions were integrated 
numerically from the leading edge of the fan, through the fan and then through 
the L region to the diaphragm. These solutions were used as boundary conditions 
at x = 0 for the interaction region while the solutions in the M region were used 
as boundary conditions at x = Uot. The problem was then solved numerically 
in the interaction zone using the method of Dennis (1972). 

While no experimental data in the boundary layer seems to be available for 
the E ,  L and I regions, good agreement is obtained with Cohen’s (1957) and 
Ban & Kuerti’s (1969) theoretical results. 
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1.2. Basic equations 

The general problem of flow in a shock tube is an extremely complicated one and 
to make progress it is necessary in the present paper to make certain simplifying 
assumptions at  the outset. Turbulence, chemical reactions and diaphragm- 
opening effects all complicate the picture and these phenomena will be excluded. 
Further, it  is assumed that (a)  the two-dimensional compressible laminar 
boundary-layer equations describe the flow, (b )  the contact surface, shock wave 
and boundaries of the expansion fan remain planar, (c) the wall temperature T, 
of the tube is constant and is equal to the temperature of the undisturbed gas 
on either side of the diaphragm, (d )  the driven and driver gases have the same 
constant Prandtl number (r and specific heat ratio y, ( e )  the speeds U,, V, and 
cl are constant as in Riemann’s solution and (f) the gases obey the perfect gas 
law p = pRT. Finally, for convenience the constant parameters A = U,/Uo and 
B = c,/Uo are defined. 

A particularly convenient formulation for compressible flow problems, in which 
separation does not occur, is to introduce Crocco variables. The shearing stress 
r(x ,  u, t )  = ,u au/ay is taken as the dependent variable. Here y measures distance 
normal to the wall, u is the fluid velocity in the direction of x increasing and p 
is the absolute viscosity. In  terms of the independent variables ( x ,  u, t ) ,  the two- 
dimensional compressible boundary-layer equations for r and the specific en- 
thalpy h(x,  u, t )  are 

where p is the fluid pressure and p is the density. The boundary conditions are 

and 
h = constant = h, at u = 0, h = h,(x, t )  at u = Ul(x, t ) .  (4) 

Here U,(x, t )  and h,(x, t )  are the speed and enthalpy of the inviscid flow respec- 
tively. The number of independent variables may be reduced from three to two 
by introducing similarity variables. This is now done in the various regions of 
the flow and the solution in each considered separately. 

r&/au = pup/ax at u = 0, r = 0 at  u = Ul(x,t), (3) 

2. The expansion fan 
2.1. Governing equations 

New dimensionless independent and dependent variables are introduced in the 
~ - 

(5) 

region E E = 1 +x/c,t, ?J = U / C I ,  f2 = plC,2t/pI, 
r = p,cf@Q-,, H = (h- h,)/h,, P = p)/pZc;. 

Here the subscript 1 is used to indicate quantities evaluated in the undisturbed 
high pressure gas to the left of E. The enthalpy in this region hz = h,, the wall 
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enthalpy. The fluid quantities within the inviscid free stream in the fan are well 
known and are reproduced below. They are denoted by a subscript 1 and using 
a tilde to indicate a non-dimensional quantity, 

In  view of the sole dependence of the free-stream quantities on the conical 
variable (, it  is natural to seek solutions containing conical similarity. A self- 
similar time dependence is anticipated by assuming @ = @(t, 7) and H = H(f;, 7). 

One further assumption is required, namely the viscosity-temperature law 

PTlIPlT = C(X, t ) ,  (7) 

discussed by Chapman & Rubesin (1949). This viscosity law is not as accurate 
a description of the behaviour o f p  as the Sutherland relation 

P1 

where S is a constant, but is a more manageable relation to deal with. To minimize 
the error inherent in (7),  the function C is chosen so that the Sutherland relation 
is satisfied at  the wall, thus giving a more precise viscosity coefficient near the 
wall, where the shear is large. Therefore 

and it may be shown that’ 

PPIPlrul = 2%) PIP1 = H ( 5 , 7 )  + 1- 

In accordance with boundary-layer theory, the pressure pl is assumed to be 
impressed across the boundary layer. Thus the dimensionless pressure P = $,/y. 

This results in the following two coupled equations for @ and H: 

with boundary conditions 

(a )  on the wall (7 = 0 ) )  @a(D/aq = aP/ag, H = 0, (11) 

(b )  at the edge of the boundary layer (7 = 2(/(y+ 1)) @ = 0, H = El- 1. (12) 

Equations (9) and (10) are then the equations to be solved simultaneously, 
subject to the boundary conditions (11) and (12) in the triangular region depicted 
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FIGURE 2. The co-ordinate system in the expansion fan (B  = c,/U,). 

in figure 2. The variable t extends from the front of the expansion fan ( f l  = 0) to 
the end at Ee = (r+ 1)/2B. 

For medium-strength waves 5, < 1 and the coefficient of the fl  derivative in (9) 
and (10) is always positive. Thus the solution may be integrated numerically 
without difficulty by a step-by-step procedure along rays which emanate from 
the origin fl  = 7 = 0 and are tied to a set of equidistant points on the line [ = Ce. 
The solution at some initial station t = ts may be determined from the analytical 
first terms of Cohen’s (1957) solution. In  the present formulation, Cohen’s (1957) 
solution is 227 fl4 

Y+l @ = l f ’ ( h )  + O(fl$), H = (& - 1)  g(h) + O ( t 2 ) ,  (13) 

where 

The variable h is Cohen’s similarity variable, measuring normal distance from 
the wall. For a particular value of 7, say T,, h may be evaluated by solving 

f ( h )  = 3(h2 + 2) erf (&A) - &A2+ ( h / d )  e-ah2, g(h) = f ( d h ) .  

[2fls/(Y + l) lf(h) - T o  = 0’ 

by Newton’s method. Good approximations to CD and H a t  Cs may then be obtained 
from equations (13)’ provided that ts is small enough. The solution may then 
be advanced numerically in the fl  direction using a constant 6 grid size hc. The 
7 grid size is constant for fixed 6 and equal to h, = 2f;/(mo - 1) (y + 1)’ where m, 
is the number of grid points taken across the boundary layer including the 
boundaries. It then remains to describe the numerical technique used t o  in- 
tegrate these equations. 
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2.2.  Numerical methods 

By dividing (9) and (10 )  by yP it may be seen that these equations are of the form 

( 1 4 )  

where F and Q are functions of <and 7, and Q contains first and second derivatives 
with respect to 7. Consider a typical station at t = to and assume that the 
solution is known along the line <: = to- h,. Consider a typical point on the 
line 6 = to at q0 = ih, and denote function value at  points v0 + h,, v0 and yo - h,  
by subscripts 2 ,  0 and 4 respectively as in figure 2. By expanding F as a Taylor 
series about the point (to,yo), a finite-difference expression for aF/at may be 

(7 + 1 - t )  aF/at = Q, 

obtained as 

Here a starred quantity refers to a quantity evaluated on the same ray as the 
corresponding unstarred quantity but one t step to the left at 6 = 6:. Substitution 
of this expression into ( 1 4 )  and approximation of the 7 derivatives by ordinary 
central differences would lead to a fully implicit finite-difference scheme for 
advancing the solution in the [ direction, suitable for use with (9) and (10). The 
difficulty with this is that the error associated with the approximation (15) is 
only of O(h,, hi) ,  and hence an improved scheme similar to the Crank-Nicolson 
method for parabolic equations was deduced. 

A Crank-Nicolson type approximation was derived by Wallrert ( 1  97 1) in 
connexion with the impulsively started sphere problem. There the time derivative 
was multiplied by t and in this situation, the ordinary Crank-Nicolson approach 
is not suitable near t = 0. The method is generalized here to deal with the 
geometry of the present problem, since as t --f I the coefficient of aF/at in ( 1 4 )  
will become small. The double integral of ( 1 4 )  from (t:, 7:) to (to, yo) is evaluated. 
Omitting the details of the derivation, it may be shown by integrating by parts, 
expanding F as a Taylor series about the points ($,yo) and ([:,T,*) and using 
relation (15) thak 

L(F0 - F:) + M(F2 - F4) + N(Pz - Fz  ) M Qo + Q:, 

where = 1 + ( 2 / h ~ ) [ ~ f ~ l o f 7 ~ ) + ~ - t o l ,  

M = ( l /h<h,)  w2 - t O ( T 0  + 1 - t o ) ] ,  

(16) 

N = - ( l / h E h : ) [ @ 2 + & 8 ( ~ : +  1 - [ : ) ] .  

Here 8 = yo - 9: is the difference between two successive ordinates on a ray and 
8 = Toh,/(o. The error associated with the approximation (16) is of 

O[hf, Oh,, 02,  8h,2/hs, B3/h,]. 

The grid sizes hE and h, were chosen so that h, < h, and for y > 1, 8 < hc. Thus 
(16) gives a more accurate approximation to (14) than (15) would do and this 
was used to  advance the solution for 

-f See also Dennis & Walker (1972). 

and H in the t direction. 
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The 7 derivatives which appear in Q(& 7) (here Q is equal to (yP)-l times the 
left-hand side of ( 9 )  or ( 10)) were approximated by central differences according to 

thus giving a set of finite-difference equations for the unknown function values 
on $ = 6,. These equations may be written at  a typical grid point at (E,, qo) as 

for @, where 
b, @z + a, @, + c, = do, (18) 

a, = - 2@$ + h;[I"(V, + 1 -to) + al?] - (h,/y) l?',LSH, - h; rL,  
b, = 2@: - c, = @:+ (h,/2y) r ' (H,  + 1) -hi PlM, 

d - - - [ { @g2 S2 + h: r*' (H,* + 1) ,L& + h;2(7$ + 1 - t,*) I?*' + +hp r* rh; 1 

1 1  1 

Y 

O - r*h,*2 
- - h: I'*',LSHz @>o* + 2h: I'flpS@$ - Lrh; @$, 

where I' = yP  and the prime indicates differentiation with respect to <. Here the 
quantities ,L and S are the averaged-central-difference and central-difference 
operators respectively in the direction. A set of difference equations similar 

~oH2+aoHo+coH, = zo, 119) 
to (181, 

may be obtained for H ,  using (lo), (16) and (17). 
Equations (18) and ( 1 9 )  thus give a set of nonlinear coupled difference equa- 

tions at  a.11 interior points (7 = h, 2h, . . . , (mo- 2 )  h)  a t  6 = to. From ( 1  l) and (12 ) ,  
H and @ are known a t  7 = (m, - 1) h, while H is known on 7 = 0. The derivative 
boundary condition on @ at 7 = 0 requires some care however. Denote function 
values at  grid points at 5 = to, 7 = - h, 0 ,  h, 2h, 3h by subscripts - 1, w, 1, 2,  3 
respectively. The obvious way of handling the first of conditions (1 1) at the wall 
is to approximate the first derivative by a central difference across the wall, 
according to the second of equations (1 7) .  This gives 

The differential equation (9) could then be assumed to hold on the wall and 
could be approximated by (18) on 7 = 0 as well as at all interior points. Equation 
(20) would then be used to eliminate from the difference equation on 7 = 0. 
The difficulty with this approach is that, when (20) is substituted into an ex- 
pression for a2@/ar2 similar to the first of equations (17) ,  the resulting accuracy 
of the approximation to the second derivative will only be of O(h,). While this 
may be acceptable in a region where @ and its derivatives are becoming small, 
it is not felt to be appropriate for use with the Crocco equation where the shear 
is largest near the wall. To retain an O(h$ accuracy near the wall, a finite- 
difference approximation of O(hi) must be used for the derivative condition. The 
sloping difference formula 
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P R  B 6 8  " 0  n,* h6 = 5, 
2 4.0402 0.2970 81 73 4.13 x 10-3 

161 145 2.06 x 10-3 

6 1.5639 0.7673 81 161 4-80 x 10-3 
161 321 2.40 x 10-3 

10 1-2177 0.9855 81 225 4.40 x 10-3 
161 449 2-20 x 10-3 

TABLE 1.  Parameters of the calculations in the expansion wave 

was used in the boundary condition, and substitution in the first of equations (1 1) 
yields 

The difference equations for CD and H at to defined at all interior points were 
solved by the direct method described by Rosser (1967) in which the derivative 
condition (22) is easily incorporated. Since the difference equations (18) and (19) 
are coupled and nonlinear (as well as the boundary condition (22)), iteration is 
necessary at each to. This was done by the following procedure. Assume that 
the iterate with superscript j has been completed and solutions @(j)([,,~) and 
H(i)(&,,r) have been produced. These were then used to approximate the co- 
efficients of the difference equations (18) and (19) as well as the last term on 
the right-hand side of (22). This redefined set of difference equations was then 
used to produce the iterate with superscript j + 1. A flip-flop technique was 
employed whereby three iterations or less were performed, depending on whether 
or not convergence was achieved, on the equation for either @ or H before turning 
to the other equation. At any stage, the most recently available information for 
the coefficients of (18) and (19) was used. This process was continued until 
ultimately convergence was obtained, which was decided by the test 

11 1 - Q W o ,  7i)/@''+%o, ~ i ) l ,  11 -Hen($, 7$)/H'f+')([o, 7i)l < (23) 

for all ri = ih, (i = 1 ,2 ,  . . . , (m, - 2)). The value of @ on 7 = 0 was then obtained 
from (22) and the solution advanced to 6 = 6, + hs, where the process was con- 
tinued. 

Three cases corresponding to PR = 2, 6 and 10 for an air-air shock tube with 
Prandtl number c = 0.73, specific heat ratio y = 1.4 and constant wall tempera- 
ture T, were considered. This gas was chosen partly with the view of avoiding 
the mathematically simpler case r = 1. Two sets of grid sizes were used for each 
case as a check on the accuracy and agreement was excellent. The parameters of 
the calculations, which were carried out on the University College London 
I.B.M. 360-65 in double precision, are givenin table 1. The number of grid points 
between and including 5 = 0 and 6 = te is denoted by no*. Since CD and H are 
independent of B and since the solutions in the fan were carried out independently 
for each case, an additional check on the numerical accuracy was obtained in the 
range of 6 where the solutions overlap. Convergence at each 6 step was very 
rapid, requiring a t  most five iterations each for @ and H .  
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FIGURE 3. Wall shear stress Ow and heat-transfer coefficient iw in the expansion fan; 
departure of iw in the L region for (a )  PR = 2, ( b )  PR = 6, (c) PR = 10. 

2.3. Calculated results 

The diniensionless shear stress (Dw on the tube wall is plotted in figure 3 in the 
range 0 6 E 6 1 and it is a monotonically increasing function of E throughout 
the fan. As a comparison Cohen’s (1957) series solution (which is for (T = 0.72) 
is also given and it may be seen that, as he conjectured, his results are valid in 
the range 0 Q [ 5 0.3, being virtually identical with the present solution. If 
the heat transferred per unit time per unit surface are from the wall to the fluid 
is denoted by qw, then 

Qw = - ( P w / d  (avy) , .  

A dimensionless coefficient of heat transfer gw may be defined as 

and this is plotted in figure 3 for a fan that extends all the way to the diaphragm 
(at = 1). As 6 increases from zero, gw increases monotonically, reaching a 
maximum a t  about [ z 0.38, and then decreases until [ = 1. Again this behaviour 
is in general agreement with Cohen’s (1957) solutions. Since the present solutions 
do not show any radical departures from Cohen’s (1957) work and are a logical 
continuation of his solutions, the flow in the fan is not discussed further here. 

At this stage the solution is now known a t  the end of the fan and may be used 
(for the three cases considered) as a boundary condition on the left edge of the 
L region. The problem is now to  proceed through the L region to the diaphragm. 
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R = U ,  a = O  a = 1  a = A  

FIGURE 4. Co-ordinate system and grid structure in the L, I and M regions. 

3. The L region 
3.1. Basic equations 

At the end of the fan the pressure gradient vanishes. The pressure (equal to p,)  
and the free-stream velocity (equal to  U,) are constant throughout the L, I and 
M regions. The normalized free-stream enthalpy is constant and equal to Zl 
in the L and I regions and Z, in the 31 region (Xl < Z,). The viscosity law ( 7 )  
may be written as pp = pWpW = constant, where w indicates a quantity evaluated 
at the wall; this law has the effect of decoupling (1) and (2) when the pressure 
gradient is zero. The appropriate similarity variables in the L, I and M regions are 

( 2 5 )  } 
cr. = x /uot ,  p = up,, Q = pwv;t/pw, 

T = pw U i  $0-4, H = (h  - h,)/h,. 

Assuming that q5 and H are independent of 0, in terms of these variables (1) and 
(2) become 

$2 az+/apz+ *+ = (p- a )  aq5/aa, (26) 

with boundary conditions 

a+/ap= H = 0 at  p =  0, 

$ = O ,  H = X l  or 2, at @ = I .  (29) 

The domain of the solution is now the rectangular region depicted in figure 4. 

transformation into the present similarity variables is 
At this stage the solution for 0 and H is known at  ae = - B ( l -  &). The 

q5 = B{1- (y - 1)/2B)-7/(7-1) a), p = Bq, (30) 

and the problem is to integrate the solution from a = ae to the diaphragm a = 0. 
This was done numerically be a step-by-step procedure which is now briefly 
described. 



30 J .  D. A .  Walker and 8. C. R. Dennis 

PR 4 "0  D O  h, 

2 - 2.8402 81 171 1-67 x 
161 34 1 8.35 x 

6 - 0.3639 81 81 4.55 x 10-3 
161 161 321 1.14 x 10-3 

10 - 0.01772 81 33 5.54 x 10-4 
161 65 129 1-38 x 10-4 

TABLE 2. Parameters of the calculations in the L region 

3.2. Numerical procedure 

Equations (26) and (27) a,re both of the form 

(p- a) aF/aa = Q, (31) 

where Q involves p derivatives of F .  By holding p constant and integrating (31) 
from at  to  a,, where a: = a, - h, and h, is the a grid size, it  may be shown that 

where the star indicates a quantity evaluated a t  a:. If the p derivatives of F 
in Q are approximated by central differences according to (17), then tridiagonal 
matrix problems similar to (18) and (19) may be formulated for # and H from 
(26) and (27) respectively, for the unknown function values at interior points 
p = ih, (i = 1,2,  . . ., (m, - 2)) at a = a,, assuming that the solution is known at  
a = a t .  Here h, is the p grid size. Thus (32) provides an implicit method of 
advancing the solution in the a direction. Since the procedure is similar in many 
respects to that described in 92.2, i t  will not be described in detail here. The 
derivative boundary condition on # at p = 0 was approximated by a relation 
analagous to (22) (with aP/a[ = 0). Since (26) isnonlinear, the difference equations 
(which are similar to (18)) are nonlinear and some iteration is required at each a 
step. For the parameters quoted in table 2, convergence (decided by a test 
analogous to (23)) occurred in two to five iterations. Equation (27) is linear in H 
and may be solved directly once q5 is known. 

Two /? grid sizes of h, = 0.0125 and 0.00625 corresponding to m, = 81 and 
161 points across the boundary layer were used in the L region. This is a region of 
some numerical difficulty, particularly near a = ae, and very fine a grid sizes had 
to be used to obtain close agreement between successive solutions at  a particular 
value of a, agreement at  a = 0 being of most importance. The various a grid 
sizes used are given in table 2. The number of grid points used between and 
including a = ad and a = 0 is denoted by no and the quoted value h, of the a grid 
size corresponds to the finest grid size used for a particular value of m,. The 
difficulty in the L region is centred mainly near the end of the fan and the reason 
for this may be inferred from a comparison of (9) and (10) and (26) and (27). 
The removal of the pressure gradient at  the end of the fan causes a discontinuity 
in the derivatives a#/aa and aH/aa at a = a, and also a discontinuous change in 
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FIGURE 5. Wall shear stress in the E and L regions for 
(a) PR = 2, (b )  PR = 6, (c) PR = 10. 

the boundary condition for $ in the wall. The nature of the solution for $ and 
H near a = a, is examined in the appendix and it is clear from the results given 
there that in order to obtain an accurate numerical solution in the region a = ae + 
fine grid sizes h, must be used. With this is mind, the first a step from a = 01, 

(as given in table 2) was further subdivided into fifty equal intervals. This pro- 
cedure produced good agreement of the various solutions in the L region. 

3.3. Calculated results 

The non-dimensional shear stress $w on the wall is plotted in figure 5 versus the 
variable f; for f; > f;,. To illustrate clearly the discontinuity in a$/af;, $, is also 
plotted for c < te in the expansion fan (where $w is just a constant times QW). 
It is apparent that, as PB increases, the drop in $W becomes more severe at  the 
end of the fan. The same type of behaviour occurs for the heat-transfer coefficient 
gw and in figure 3 the curves labelled (a ) ,  ( b )  and (c )  illustrate the departure from 
the fan solution of @, in the L region for the three cases considered. 

The physical variable y is retrieved by integration of r = ,u aulay, and 

Defining a dimensionless ordinate x by 

a dimensionless boundary-layer thickness b* = z(a, 0-975) may be defined as 
that ordinate a t  which the velocity u achieves 97.5% of the free-stream value. 
The boundary-layer thickness b* is plotted in figure 6 in the range 0 < 5 < 1 
for the three cases considered. A t  the end of the fan a8*/8c is discontinuous and the 
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FIGURE 6. Boundary-layer thickness S* in the E and L regions for 
(a)  PR = 2, (a) PR = 6,  (c) PR = 10. 

boundary layer thickens a t  a faster rate upon passing from the E to the L region. 
The reason for this behaviour as well as that of $w and gqD at the end of the fan 
is due to the sudden removal of the pressure gradient; this is discussed more fully 
in the appendix. 

Lastly, it may be seen that the flow in the E-L region is very different from 
that predicted by the infinitely thin expansion wave solution of Mirels (1956) 
which was used by Ban & Kuerti (1969) in their study of the 1 region. The im- 
portant question, however, as regards the interaction region is how the solutions 
agree at  the diaphragm. The case Ban & Kuerti (1969) considered was for 
PE = 1-35 and c = 1 and this case was briefly considered by the present method. 
It was found that, although the solutions do not agree throughout most of the 
E-L region, agreement is reasonably close a t  the diaphragm. This indicates that 
for very weak waves the assumption of a zero-thickness expansion wave gives 
a good approximation to the flow a t  the diaphragm. I n  this case the downstream 
influence of the fan seems to be slight. 

4. The M region 
I n  the n/r region, which extends from a = 1 to a = A ,  the problem coincides 

with the problem considered by Mirels (1955). Here, as Stewartson (1964) has 
pointed out, the solution is independent of conditions in the I region. The 
variables may be separated according to 
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where 
MM"+Z(m) 1 A-/3 = 0, with M'(0) = M(1) = 0, 

M ( 7 + ; H & ]  7 - 1  1 -M'H&(l- i )  = 0, with HM(0) = 0, qlf(l) = &,, (37) 

where X, is the constant normalized free-stream enthalpy, which is strictly 
greater than the value Xl in the L and I regions. 

If the expansion wave is treated as being infinitely thin, a reduction similar 
to equations (35) may be made in the L region and equations similar to (36) 
and (37) obtained. This was done by Ban & Kuerti (1969), who then linearized 
equation (36) (and a similar one for the L region) by expanding M and HM in 
a power series in A-1. A consistent linearization scheme was then used to solve 
the problem in the I region. In  their case A = 9.95 but since in the present paper 
cases where A is much smaller are considered this approach was not thought to 
be profitable. 

It is required, then, to solve the ordinary differential equations (36) and (37) 
for a particular value of A .  Equation (36) may be written as 

1 (A-P) 
2M(P) ( A  - 1) * 

M"(P) = ~(/3), where K ( P )  = -- - (38) 

Denote function values at grid points Po - h, Po and Po + h, where lo is a typical 
internal mesh point and h is the numerical grid size, by subscripts 4, 0 and 2 
respectively. The finite-difference approximation discussed by Fox (1957, p. 68), 

h2 

12 
M2-2M0+M4 = - ( K ~ +  1 0 ~ , + ~ , ) + 0  (39) 

was used at  all interior grid points, except a t  the point adjacent to the boundary, 
/3 = 1, where ~ ( 1 )  is undefined. At this point, (36) was approximated by the 
difference formula given by Fox (1957, p. 18) as 

M, - 2M0 + X4 = h2Ko + &(V4 + V5) M2 + 0(&V6M2), (40) 

where V is the backward-difference operator in the ,8 direction. Equation (40) 
is multiplied by M, and thus, with (39), a tridiagonal matrix problem is obtained 
for the internal function values at  all internal points. This was solved by an 
iterative procedure by the direct method described by Rosser (1967). The 
derivative boundary condition in (36) was approximated by 

(A-iA2++A3-$A4+iA5)M(0) = O+0(-&A6M(0)), (41) 

where A is the forward-difference operator. Since K ( P )  in (39) and the second 
term on the right-hand of (40) contain unknown internal function values, some 
iteration is necessary to obtain a solution for a given A .  It was found that by 
averaging two successive iterates, by taking their arithmetic mean, a solution 
for M ( P )  could be obtained in ten to fifteen iterations (employing a convergence 
criterion similar to the first of (23)). Three grid sizes of h = 0.05, 0.025 and 
0.0125 were used as a check on the accuracy. 

3 F L m  56 
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FIGURE 7. M(P)  for ( a )  PR = 2, (b )  PR = 6, (c) PR = 10. 
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FIGURE 7. M(P)  for ( a )  PR = 2, (b )  PR = 6, (c) PR = 10. 

3 

Once a solution for N(P) had been obtained (37) was solved numerically for 
HAM(p).  Using ordinary central-difference approximations, a tridiagonal mat,rix 
problem may be formulated for all internal values of H3f; this was then solved 
directly. Once a solution had been obtained for H&3) difference corrections of 

were added to the original difference equations as homogeneous correction terms, 
in accordance with the method described by Fox (1957, p. 67). This was done at 
all interior points except those adjacent to the boundaries, where sloping dif- 
ference corrections were used. Convergence of this iterative scheme, decided by 
a test similar to the second of (23), is very rapid. I n  this manner the ultimate 
trunca.tion error was of O(h4).  

The functions M ( P )  are plotted in figure 7 for the three cases considered. Some 
test cases of large A were considered by the present method and good agreement 
was obtained with the linearized solutions of Ban & Kuerti (1969). The character 
of the solution in the M region has been well discussed by Mirels (1955) and will 
not be described in detail here. 
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5. The interaction region 
5.1. Numerical scheme 

At this stage the solution is known throughout the shock tube except in the 
interaction region I, and in particular it is known as a+ 0 - and as u -+ I + . The 
nature of the problem in the I region now becomes more apparent. Numerical 
marching techniques, whether started from a = 0 or u = 1, will fail since the 
coefficient of the a derivative in (26) and (27) vanishes and changes sign in the 
I region where 0 < u < 1.  In  the I region, where ,8 > u the preferred direction 
is the + a direction as the influence is due to the driver gas whereas where ,8 < u 
the preferred direction is the --a direction and the influence is due mainly to 
the boundary layer created by the passage of the shock. Since the solution in the 
Iregion must match the solution at  a = 0 and u = 1, the problem must be treated 
as a boundary-value problem. This was recognized by Lam & Crocco (1958) and 
they attempted to prove that the solution in the I region is unique with boundary 
conditions specified at  a = 0 and a = 1.  

In the present problem the boundary conditions for the I region are the solution 
in the M region at  a = 1 and the solution in the L region at  a = 0. The problem is 
then to solve (26) and (27) in the square I region depicted in figure 4 with boundary 
conditions (28) and (29) on p = 0 , l  respectively and H and q5 known on a = 0 , l .  

With the ultimate view of making the numerical scheme convergent, it is 
convenient to work in terms of the perturbation function [(a, P), where 

Here 

(42) 

(43) 

is the Rayleigh (1911) solution expressed in Crocco variables. Ban & Kuerti 
(1969) refer to q50 as the zeroth-order shear stress and the function fre(P), as 
termed by these authors, is the inverse error function. Equation (26) now 
becomes 

E aypp2 - FC = (p - ayaa, (44) 

where E = (q5,, + c)2, F = +,{ 1 + nicexp (fre2/3)), (45) 

and 6 satisfies the same boundary conditions as q5 on ,8 = 0, I .  
A square grid in the I region with grid size h was used. Using the Southwell 

system (indicated in figure 4) to number grid points about a typical point 0 in 
the mesh, a straightforward central-difference approximation to (44) would be 

EOKZ - 2CO + 6) - h2F0 Q = M P  - a)  “1 - Q). (46) 

Now E 2 0, F 2 0 and we suppose that E and F are known. The difficulty with the 
system of equations (46) is that in general they are not diagonally dominant in the 
sense described by Varga (1962, p. 23) and hence an iterative method of solution 
based on this approximation is likely to diverge. The situation may be rectified 
however by replacing the u derivative in (44) by a simple forward- or backward- 
difference approximation depending on the sign of ,8-a. This technique was 
first suggested by Spalding (1967) and later by Greenspan (1968) in studies of the 
Navier-Stokes equations and has been used by many others since then. Dennis 

3-2 
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(1972) recognized that this technique could be applied to singular-parabolic 
equations and solved the problem of an impulsively started, semi-infinite flat 
plate in this manner. In the present problem the technique is as follows. The 
finite-difference approximation to (44) is 

~ o ~ ~ z - ~ ~ o + + 4 ~ - ~ 2 ~ o ~ o - ~ ~ P - ~ ~ &  = co, (47) 

where 

and Co is a correction term. If the correction term Co is neglected, (47) defines a set 
of difference equations at  all interior points in the I region which is everywhere 
diagonally dominant. It should be noted that this difference scheme takes 
differences of the a derivative in the preferred direction throughout the I region. 

As in Q 2.2 the derivative boundary condition on 5 a t  P = 0 must be treated with 
some care. Consider equation (47) at the grid point adjacent to the wall /3 = 0. 
Approximation of the derivative condition by a sloping-difference formula 
similar to (21) indicates that the value c4 of 5 on the wall is related to the interior 
points by 

where c5 is the value of 5 at ,B = 3h and the truncation error is of O(h4). Sub- 
stitution of this into (47) gives 

&Eo( - 2Co + Q + Gj) -h2& Co -h(P- a)  (Cl- Co) = C,* (49) 

as the typical difference equation along the line /3 = h, and diagonal dominance 
on ,B = h is preserved. Here C$ is a correction term. Neglecting for the moment 
the correction terms in (47) and (49), the resulting difference equations defined 
at all internal mesh points were solved by the iterative Gauss-Seidel procedure 
(Varga 1962) in the following manner. Suppose that the iterate with super- 
script j has been completed. Then approximations to E and F were obtained 
and the mesh was swept along lines of constant a starting with a = h, to produce 
the iterate with superscriptj + 1. This process was continued until convergence, 

(50) 
decided by the test 

for all internal points, was obtained. It should be noted that, for this problem, 
this test of convergence is a more stringent one than requiring the absolute value 
of the difference of two successive iterates to be less than Having obtained 
a solution for 6 in this manner, the values of 5 on the wall were obtained from 
(48). Once [is known, q5 is known and (27) may be solved for H(a ,P) .  A finite- 
difference scheme similar to (47) was used to approximate (27) as 

11 - CO)/cj+l) /  < 10-4 

where 

E,*(H,-2Ho+H4)-+hFZ(Hz- H4)+h2G,*-h(p-a)&* = Do, (51) 

Ho-H, if P - a > O ,  
Q * = (  Hl-Ho if P-a < 0, 



The boundary layer in a s b c k  tube 37 

and Do is a correction term. Neglect of the correction term yields a set of 
diagonally dominant difference equations at  all internal mesh points; H is 
known on P = 0 and P = 1 from (28) and (29) respectively. A successive over- 
relaxation scheme was found to produce faster convergence than Gauss-Seidel 
iteration. Two grid sizes of h = 0.05 and h = 0.025 were used €or both the 9 and 
H equations and over-relaxation factors of w = 1-4 and 1-5 respectively seemed 
to give rapid convergence for the H equation. Convergence was decided by a test 
similar to equation (50). 

In  order to avoid very small grid sizes in the I region, which invariably lead to 
large computing times, it is necessary to make some allowance for higher order 
difference corrections. It may be shown from the formulae given by Pox (1957, 
p. 18) that, for all points in the interior and not adjacent to the boundaries p = 0 
and j3 = 1, the leading difference correction terms in C, in (47) are 

(52) 

Here 6 and 6, are the central-difference operators in the P and a directions re- 
spectively. For points adjacent to the boundary p = 1, to avoid considering 
points outside the region, the leading terms in Co are 

&{Eo a4 + 6hlP - a[ 8:] go. 

&{Eo( V3 + V4) A + 6h IP - a I 6;) C,, (53) 

where V and A are the backward- and forward-difference operators in the 
direction respectively. For the points adjacent to the boundary /3 = 0, in- 
corporating the higher order derivative formula ( e l ) ,  the leading terms in the 
difference correction C,* in (49) are 

&{E0(A3-A4) V +  (12E0/1507) (162A- 243A2+ 297A3- 132A4) 

+ qP-a l  89CO. (54) 

Having obtained a converged solution for 6 by neglecting the corrections Co and 
C z ,  the leading terms in these corrections were calculated and added to the 
difference equations (47) and (49) as homogeneous correction terms. The iterative 
scheme for gwas then continued, the corrections being updated from time to time 
until ultimately overall convergence was obtained. The value of y on the wall was 
then obtained by inversion of (41) as 

[(a,O) = &137-77A+47A2-27A3+ 12A4}6(a,h). ( 5 5 )  

The derivative a$/a,8 for use in the enthalpy equation was then estimated using 
central- and sloping-difference formulae which are accurate to O(h4).  

The leading terms in the difference corrections Do in the H equation (51) are 

for all points not adjacent to ,8 = 0 and p = 1. For points adjacent to p = 0 the 
leading terms in Do are 

7&{E,*(A3 - A4) V - 2A2 + A') V + 6hlP-aJ S?}Ho, 

&{E,*(V3 + V4) A - hF$ ( 2V2 + V3) A + 6 h J p  - a1 6;) Ho. 

(57) 

( 5 8 )  

and for points adjacent to P = 1, 
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P 
FIGURE 8. Perturbation shear stress in the I region for PR = 6. 

Again the corrections Do were evaluated from the converged solution for H 
obtained by neglecting Do and an iterative scheme analagous to the one for the 
correction of < was set up until, ultimately, overall convergence was achieved. 
I n  this manner a solution for q5 and H was produced in the I region which is 
effectively accurate to O(h4) and O(h2) in the /3 and a directions respectively. 

5.2. Calculated results 

Por all three cases considered two difference corrected solutions corresponding 
to grid sizes of h = 0.05 and 0.025 were obtained in the I region as a check on 
the accuracy. The solutions based on the finest grid sizes in the L and M regions 
were used as boundary conditions a t  a = 0 and a = 1; the results presented in 
this section are based on the solutions for h = 0.025 in the I region and are in 
good agreement with the solutions obtained for h = 0.05. The physical parameters 
of the calculations, which are uniquely determined given PR, are given in table 3 
for the three cases considered. M, is the shock Mach number. 

PR A B Ms 8% 2 0  

2 4.6845 4.0402 1.159 - 0.09656 0.1025 
6 2.2750 1.5639 1.455 - 0.2394 0.2903 

10 1.9575 1.2177 1.608 - 0.3015 0.3932 

TABLE 3. Physical parameters of the solutions ( B  = 0.73, y = 1.4) 
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FIGURE 9. Perturbation wall shear stress 5, in the I region for 
(a) PR = 2, (b )  PR = 6, (c) PR = 10. 

The variation of the perturbation shear stress cis shown in figure 8 throughout 
the I region for the case PR = 6 and the variation of the perturbation wall shear 
stress gw is shown in figure 9 for the three cases considered. The heat-transfer 
coefficient gw is plotted in figure 10. As the I region is entered from the diaphragm, 
gW is decreasing but then tends to level out and slightly increase; this effect 
becomes more noticeable for increasing PR. It then decreases rapidly and 
eventually becomes negative. On passing through the contact surface the rate 
of increase lessens appreciably and eventually ijw approaches - 00 at the shock 
wave. 

The dimensionless boundary-layer thickness is plotted in figure 11 for the 
three cases. To illustrate the smooth transition of 6" from the L to the I region 
part of the L region is included. The boundary layer thickens continuously on 
passing from the I, to the I region reaching a maximum just past the middle. It 
then exhibits a tendency to decrease slightly, and subsequently thickens very 
rapidly near the contact surface, achieving an absolute maximum at a = 1. The 
rapid thickening near the contact surface is in agreement with the solution of 
Ban & Kuerti (1969). This effect is caused mainly by the temperature discon- 
tinuity and thus as PR is increased becomes more pronounced. Some evidence 
that this behaviour is a t  least qualitatively correct may be seen by examination 
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FIGURE 10. Heat-transfer coefficient in the interaction region for 
(a)  PB = 2, (b )  PR = 6, (c) PR = 10. 

of the experimental photograph obtained by Charatis & Wilkerson (1959) and 
reproduced by Gaydon & Hurle (1963, plate 2(a)) .  This photograph was for a 
neon-methane mixture with a shock Mach number of 6.7. The flow is turbulent 
in the interaction zone but a rapid thickening of the boundary layer near the 
contact surface is clearly evident. 

The enthalpy profiles for the case PR = 6 are plotted versus the dimensionless 
ordinate x in figure 12 in the interaction zone. Lines of constant /3 are plotted 
in figure 13 versus the dimensionless distance z from the wall, for the case PR = 10. 
A stream function $may be defined by the equationpu = a$/ay and a dimension- 
less stream function 

$(.,A = UO(Pu,P, t)* =so” y 
may be defined. A plot of lines of constant $, which represents lines of constant 
mass flux, exhibits the same general behaviour as in figure 13. Near the wall 
the gas passes through the contact surface almost as if unaware of the driver gas. 
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FIGURE 11. DimensionIess boundary-layer thickness S* in the L, I and 
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FIGURE 12. Enthalpy profiles in the interaction region for PR = 6 .  

This is the expected result. Further away from the wall the lines of constant ,8 
degenerate from a smooth transition at  the contact surface to eventually having 
a discontinuous slope in the upper regions of the boundary layer. Near the edge 
of the boundary layer the gas appears to undergo a slight compression in the 
right-hand half of the interaction zone. It then experiences a rapid expansion 
before passing through the contact surface whereupon it is continuously com- 
pressed toward the shock. The singular line where ,8 = cx is also shown in figure 13. 
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FIGURE 13. Lines of constant /3 in the interaction and M regions for PR = 10. 

6. Conclusion 
I n  the framework of the similarity variables used, the boundary layer in 

a shock tube has been examined and three cases, representative of weak and 
medium-strength shock and expansion waves calculated. An extension of the 
present method could be made to the case where the expansion wave extends 
into the interaction zone. The interaction region would have to be divided into 
two regions and the forward-backward difference scheme used in each, matching 
the solution a t  the dividing boundary. If this case were considered it might be 
more advantageous (though not necessary) to define a new vertical co-ordinate 
in the fan (once the solution has been obtained a t  the diaphragm) in order to 
have a rectangular grid configuration in the overlapping E and I regions. It might 
be anticipated beforehand though that this may be a difficult problem since 
an increasing value of PR will mean increasing gradients in the I region. For this 
reason, finer grid sizes might have to be used there in order to produce reliable 
solutions, and the increased number of mesh points alone will lead to large 
computing times. 

Although the Crocco transformation considerably simplifies the two- 
dimensional boundary-layer equations, there is a well-known difficulty inherent 
in the transformation. This is associated with the singular behaviour of ar/au 
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near u = Ul(x,t) which has been described by Stewartson (1960, p. 32). The grid 
sizes reported in this paper were chosen after some experience and were based 
on a balance between the consideration of obtaining reasonable accuracy for 
the physical properties of the flow without an excessive amount of computation. 
The effect of the singularity is to preclude a high degree of accuracy, but never- 
theless it is believed that a reasonable degree of accuracy can be obtained. As 
a representative example of this point, consider the solution for the function 
Mfp) as outlined in $4. Halving the grid size from h = 0.05 produces a value of 
M ( 0 )  which differs from the previous solution by about 0.1 %. Further halving 
of the grid successively produces a slow convergence by reducing the percentage 
difference successively by a factor of about 2 .  The difficulty, however, appears 
to be only one of degree and the results presented herein are believed to be reliable 
to at  least three significant figures. 

There are a number of points on which the method may be criticized. It is 
limited to consideration of shock tubes containing driver and driven gases that 
have the same thermal properties. It assumes that the flow is laminar in the tube 
while experimentally it is usually influenced by diaphragm-opening effects and 
is turbulent. It may however be argued that a first step in understanding the 
general problem is to compute the simplified laminar one. 

Finally, the assumption of self-similar time dependence must be questioned. 
It is clear that the boundary-layer phenomena illustrated in figure 11 will not 
persist in nature for any period of time. The pressure disturbance caused by such 
a boundary layer will act to smooth it out and cause the contact surface to 
accelerate downstream. This behaviour of the contact surface has been observed 
experimentally (see Mirels 1971). In  this sense, then, the assumption that the 
contact surface moves with constant speed is not strictly justified. This means 
that the problem is an inherently unsteady one in the similarity variables and 
further attempts to solve it might be based on the unsteady similarity equations 
whilst making some allowance for an acceleration of the contact surface. The 
same type of criticism applies in the region near the end of the rarefaction wave, 
where diffusion will act to smooth out the sharp corner in the boundary layer 
(see figure 6 ) .  

In conclusion, then, the results of this study must in a sense be regarded as 
negative although a necessary step in the ultimate solution of the shock tube 
problem. 
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Appendix 
In  this section, the nature of the solution in the L region is examined in the 

vicinity of the trailing edge of the expansion fan. Suppose that the fan terminates 
at  ae = -a;  then if the fan extends up to or past the diaphragm, a 6 0 and if it 
ends before the diaphragm a > 0. Here the latter case is investigated. Consider 
equations (26 )  and (27) for the shear stress $ and normalized enthalpy H in 
similarity variables and define a dimensionless pressure P = p/pw U& In  general, 
at the wall (p = 0) 4 a$pp = aP/aa, (A 1) 

and 

where G = (y - 1)/B2. Define 
fan. In  the L region P is constant, while in the fan P = P(a); hence 

= a + a so that x = 0 is the trailing edge of the 

lim aP/8a = 0 and lim aP/aa = p',  say. (A 3) 
? + O f  Z+O- 

Suppose that at  X = 0, $ = $o(p) and H = Ho(p)  and for small /3 

$o(p) = ao+alp+a2P2+ ..., Ho(p) = blp+b2P2+ ... . (A 4) 
From (A 1) and (A 2) 

Proceeding in the spirit of the methods given by Goldstein (1930) define 

g = 53, 7 = 3px-4, (A 6 )  

whereupon (26)  and (27) become 
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The solutions for the first three terms are 

f0 = '07 

f2 = A,(2z2+1)+Bz (2z2+1)(erfz-1)+- 

-- ' I 2  {7rfr(2z2 + 1) (erf x ) 2  + 2x e+' erf x } ,  (A 14) a, p1a,xe-22 
+z- n~ a,un* 

where x = a&y/a, and A ,  and B, are constants such that 

A ,  = (l/aa,) {2a,a,3+pf2}, B, = p1ao/4a2. (A 15) 

The equation for the first two functions in the expansion (A 10) are 

(fi/a) 91 + 2aygl- 2ag, = 0, 
(fg/a) gg + 2aygL - 4ag, = - 4Cfi + dfofX - (2/g)fofid + 47(g1 - W& 

and the solutions of these equations satisfying the boundary conditions 

g i ( 0 )  = 0 and limg,/yi = 2{bi 
rl'm 

where z* = (aa))y/a,. 
The solution given by (A 9) and (A 10) is valid in an inner region near /3 = 0, 

where P N 23. The asymptotic form of the expansions (A 9) and (A 10) as y -+ co is 

9 + a,+ 2alEy++z{4a,y2+ (4a,ai+a,)/2~}+0(+~),  (A 16)  

H + 2 b , ~ ~ ~ + 2 [ 4 b , y 2 + ( l / a ) { 2 b , a ~ / ~ - p r b 1 d + u ~ C ) ] + O ( ~ 3 ) ,  (A 17) 

and this suggests that in the outer region, where /3 N 1, $ and H are of the form 

(A 18) 
$ = 9dP) + Z91(P)  + W2)' 
H = H0(P) + ZHl(/3) + O(Z2).  

Substitution in (26)  and (27 )  implies that 

and it is easily verified that the outer solution (A 18) as /3 -+ 0 matches the inner 
solution (A 9) and (A 10) as y -+ co. 

The inner solution (A 9) indicates that on the wall 

$(a, 0 )  = a, + (Zpf/(un)t)  24 + O(2).  (A 19) 
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- 
X $ W I N  $ W l C  

0 1.4874 1.4874 
4.69 x 10-4 1.4301 1.4268 
9.38 x 10-4 1-4075 1.4018 
1-41 x 10-3 1.3907 1.3825 
1.86 x 10-3 1.3774 1.3668 
2.33 x 10-3 1-3654 1.3525 
2-80 x 10-3 1-3548 1.3395 

‘?WIN 

0.3431 
0.3364 
0.3335 
0.3313 
0.3295 
0.3279 
0.3264 

$wlc  

0.3431 
0.3366 
0.3338 
0.3318 
0.3301 
0.3285 
0-3271 

TABLE 4. Comparison of numerical and inner solution for PR = 6 

The reason for the numerical difficulty a t  the end of the fan is now clear. Recalling 
that the numerical procedure (32) was not applied on the wall itself, nevertheless 
the a derivatives of 45, upon which the truncation error in (32) depends, will be 
large near the wall a t  the end of the fan; this requires the use of small grid sizes 
in this region. Noting that 

a comparison of the values of q5 on the wall obtained from the numerical solution 
for PR = 6 (denoted by & I N )  a.nd that obtained from the first two terms of 
(A 19) (denoted by q$,,Ic) is given in table 4 for various values of 5. One further 
comparison is possible. The inner solution (A 9) and (A 10) gives the following 
expression for the heat-transfer coefficient gto: 

and this quantity is compared with the numerical solution gWlN for PR = 6 in 
table 4. There &,Ic represents the first two terms of (A 20). 

Finally the nature of the boundary-layer thickness 6* (defined in 53.3) may 
be examined near the end of the fan. Splitting the integral for S* into two parts 
gives 

where % is small and rl is some large value of 7. I n  the inner region, q5 and H are 
written as 

Substitution of the expressions (A 22) into the first integral in (A 21) and the 
outer solution (A 18) into the second integral leads to 
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For ?i small, the lower limit in the third integral may be replaced by 0 and the 
upper limit in the second by 00. Hence 

Here S*(O) is the boundary-layer thickness at  the end of the fan. Since p' is 
negative, removal of the pressure gradient causes an added increase in 6" a t  
the end of the fan and with increasing PR this will become more pronounced 
(see figure 6). 
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